Regioselective addition of an alkyne to both CO and CNPr functionalities in osmium clusters

${ }^{\text {a }}$ Institute of C hemistry, A cademia Sinica, Taipei, Taiwan 115, R epublic of China
${ }^{\text {b }}$ D epartment of C hemistry, N ational C hung C heng U niversity, Chia-Y i, Taiwan 621, Republic of China

Reaction of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})(\mathrm{N} \mathrm{CM} \mathrm{e)}]\right.$ with methyl propiolate at $0^{\circ} \mathrm{C}$ gave $\left[\mathrm{O}_{2}(\mathrm{CO})_{6}\left\{\mu-\eta^{2}: \eta^{3}-\mathrm{C}(\mathrm{OH}) \mathrm{C}-\right.\right.$ $\left.\left.\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CHCNHPr}\right\}\right]$ as the major product and $\left[\mathrm{OS}_{2}(\mathrm{CO})_{6}-\right.$ $\left\{\mu-\eta^{2}: \eta^{3}-\mathrm{C}(\mathrm{OH}) \mathrm{CH}=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{M}\right.\right.$ e) CN H Pr $\}$] as the minor product, in which two kinds of $\mathrm{C}-\mathrm{C}$ bond formations occur regioselectively involving coupling of alkyne and CO as well as coupling of alkyne and CN Pr; the stereochemistry is likely to be mediated by the co-ordinated isocyanide.

The investigation of carbon-carbon bond formation has attracted considerable attention in view of its relevance to catalysis and organic synthesis. ${ }^{1}$ Transition-metal complexes play an indispensable role in this process. It has been observed that alkynes may couple with other alkynes, with CO, or with isocyanides to form metal-alkylidene bonds. ${ }^{2-4} \mathrm{H}$ owever, little is known about the $\mathrm{C}-\mathrm{C}$ coupling reactions of alkynes with both CO and CNR simultaneously mediated by metal centres. In the course of our attempts to evaluate the influence of isocyanidecarbonyl replacement on the reactivity of metal complexes we have previously reported several cases involving unusual $\mathrm{C}-\mathrm{H}$ activation and $\mathrm{C}-\mathrm{C}$ coupling reactions in triosmium complexes. ${ }^{5} \mathrm{H}$ ere we describe an unprecedented regioselective addition of alkyne with both CO and CNPr groups in osmium clusters. The co-ordinated isocyanide may play an important role in determining the regioselectivity for the insertion of unsymmetrical alkyne
The complex $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})(\mathrm{N} \mathrm{CM} \mathrm{e)}] 1\right.$ reacts readily with an excess of methyl propiolate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ for 10 \min to give the major product $\left[\mathrm{Ss}_{2}(\mathrm{CO})_{6}\left\{\mu-\eta^{2}: \eta^{3}\right.\right.$ -
\dagger A solution of $\left[\mathrm{O}_{3}(\mathrm{CO})_{11}(\mathrm{CN} \mathrm{Pr})\right](120 \mathrm{mg}, 0.127 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50$ $\left.\mathrm{cm}^{3}\right)$ and $\mathrm{MeCN}\left(1 \mathrm{~cm}^{3}\right)$ was treated with a solution of $\mathrm{M}_{3} \mathrm{NO}(15 \mathrm{mg}$, 0.200 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ to form $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CNPr})(\mathrm{NCM} \mathrm{e})\right]$. The latter was treated with an excess of methyl propiolate ($150 \mu \mathrm{l}, 1.69$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(70 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ for 10 min . The solvent was then removed under reduced pressure and the residue purified on a silica gel TLC plate with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent to afford $\left[\mathrm{Os}_{2}(\mathrm{CO})_{6}\left\{\mu-\eta^{2}: \eta^{3}-\right.\right.$ $\left.\left.\mathrm{C}(\mathrm{OH}) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CHCNHPr}\right\}\right] 2(35 \mathrm{mg}, 0.046 \mathrm{mmol}, 37 \%)$ and $\left[\mathrm{Os}_{2}(\mathrm{CO})_{6}\left\{\mu-\eta^{2}: \eta^{3}-\mathrm{C}(\mathrm{OH}) \mathrm{CH}=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right) \mathrm{CNHPr}\right\}\right] 3(7 \mathrm{mg}, 0.009$ mmol, 7\%). Complex 2 (Found: C, 24.7; H, 1.85; N, 1.65. Calc. for $\left.\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{NO}_{9} \mathrm{Os}_{2}: \mathrm{C}, 24.65 ; \mathrm{H}, 1.65 ; \mathrm{N}, 1.9 \%\right)$: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) v(\mathrm{CO}) 2076 \mathrm{w}$, 2043vs, 1998 s and $1973 \mathrm{~m} \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} N \mathrm{M}$ R (CDCl_{3}) $\delta 11.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$, $5.12(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}, \mathrm{CH}$ and OH$), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.17(\mathrm{~m}, 1 \mathrm{H}$ $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{CH}_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.05\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} \mathrm{CH}_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.56(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$) and $0.94\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; mass spectrum ($\mathrm{FAB},{ }^{192} \mathrm{Os}$) m/z $735\left(\mathrm{M}^{+}\right), 707\left(\mathrm{M}^{+}-\mathrm{CO}\right), 679\left(\mathrm{M}^{+}-2 \mathrm{CO}\right)$ $651\left(\mathrm{M}^{+}-3 \mathrm{CO}\right), 623\left(\mathrm{M}^{+}-4 \mathrm{CO}\right), 595\left(\mathrm{M}^{+}-5 \mathrm{CO}\right)$ and 567 ($\mathrm{M}^{+}-6 \mathrm{CO}$). Complex 3: IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$) v(CO) 2074w, 2041vs, 1998s and $1967 \mathrm{~m} \mathrm{~cm}{ }^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 6.55(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}), 5.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.36\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}\right.$ $\mathrm{CH}_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $3.28\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} \mathrm{CH}_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.62(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$) and 0.97 ($\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$); mass spectrum (FAB, ${ }^{192} \mathrm{Os}$) m/z $735\left(\mathrm{M}^{+}\right), 707\left(\mathrm{M}^{+}-\mathrm{CO}\right), 679\left(\mathrm{M}^{+}-2 \mathrm{CO}\right), 651$ $\left(M^{+}-3 C O\right), 623\left(M^{+}-4 C O\right)$ and $595\left(M^{+}-5 C O\right)$.
$\left.\left.\mathrm{C}(\mathrm{OH}) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CHCNHPr}\right\}\right] \mathbf{2}$ in 37\% yield and the minor complex $\left[\mathrm{Os}_{2}(\mathrm{CO})_{6}\left\{\mu-\eta^{2}: \eta^{3}-\mathrm{C}(\mathrm{OH}) \mathrm{CH}=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right) \mathrm{CN} \mathrm{HPr}\right\}\right] 3$ in 7% yield (Scheme 1). \dagger The ${ }^{1}$ H N M R spectrum of 2 showed a singlet at $\delta 11.08$ corresponding to the resonance of the HN of theco-ordinated $\mu-\eta^{2}: \eta^{3}-\mathrm{C}(\mathrm{OH}) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{M} \mathrm{e}_{2}\right)=\mathrm{CH} \mathrm{CN}$ H Prgroup, whereas the peaks of HC and HO of the ligand overlapped and appeared at $\delta 5.12$. A fter $\mathrm{D}_{2} \mathrm{O}$ exchange the HN signal at δ 11.08 disappeared, and the peak at $\delta 5.12$ decreased its intensity to an integration area of one hydrogen atom, indicating disappearance of the H O signal. TheH C peak was further confirmed by the heteronuclear ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ (HM QC) spectrum of 2 , which showed the proton resonating at $\delta 5.12$ binds to a carbon atom at $\delta 47.8$. TheFAB mass spectrum of $\mathbf{2}$ exhibited the molecular ion peak at $\mathrm{m} / \mathrm{z} 735$ and peaks corresponding to subsequent CO-loss fragments. The ${ }^{1} \mathrm{H}$ N M R spectrum of 3 showed three singlets at $\delta 9.94,6.55$ and 5.42 assigned to the resonances of HN, HC and HO , respectively. The FAB mass spectrum of $\mathbf{3}$ with a molecular ion at $\mathrm{m} / \mathrm{z} 735$ confirmed that complexes $\mathbf{2}$ and 3 are isomers. Their formation involves the fragmentation of the triosmium cluster. In addition a complex mixture was also observed during the reaction. The third Os atom is suggested to be involved in these by-products. A ttempts to characterize the reaction intermediates by spectroscopic means were unsuccessful. The co-ordinated isocyanide in 1 underwent two kinds of interactions including a $\mathrm{C}-\mathrm{C}$ bond formation with the alkyne and protonation of the nitrogen atom. The proton source is likely to be impurities in the reagent and not $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the same products were obtained when $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was used as solvent.
In addition to spectroscopic studies, the structure of complex 2 was further defined by X-ray diffraction analysis. \ddagger An ORTEP ${ }^{7}$ drawing is given in Fig. 1. The two osmium atoms separated by $2.8132(7) \AA$ are asymmetrically bridged by a
$\ddagger \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{9} \mathrm{Os}_{2}$ 2, $\mathrm{M}=731.66$, monoclinic, space group $\mathrm{P} 2_{1} / \mathrm{n}$, $a=9.148(2), b=17.514(2), c=12.215(2)^{\circ}, \beta=101.01(2)^{\circ}, U=1921.0(6)$ $\AA^{3}, Z=4, D_{c}=2.530 \mathrm{~g} \mathrm{~cm}^{-3}$, crystal dimensions $0.25 \times 0.25 \times 0.25 \mathrm{~mm}$, $F(000)=1336 . \lambda=0.71069 \AA, \mu(\mathrm{M} \mathrm{o}-\mathrm{K} \alpha)=13.262 \mathrm{mnm}^{-1}$. Intensity data were collected on an Enraf-N onius CAD-4 diffractometer by the $\omega-2 \theta$ method $\left(2 \theta_{\max }=45^{\circ}\right)$; of 2672 reflections measured, 1966 were considered observed $[1>2 \sigma(1)]$. The structure was solved by direct methods and refined by full-matrix least squares using N RCVAX. ${ }^{6}$ All non-hydrogen atoms were anisotropically refined. $R=0.0336$, $w R\left(F^{2}\right)=0.0903 . \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{9} \mathrm{OS}_{2} \mathbf{3}, \mathrm{M}=731.66$, triclinic, space group $P \overline{1}, a=9.4455(5), \quad b=12.7473(14), \quad c=17.082(2) ~ \AA, \quad \alpha=86.173(10)$, $\beta=85.739(10), \gamma=73.053(10)^{\circ}, U=1959.8(3) \AA^{3}, Z=4, D_{c}=2.480 \mathrm{~g}$ cm^{-3}, crystal dimensions $0.25 \times 0.13 \times 0.19 \mathrm{~mm}, \mathrm{~F}(000)=1336, \mu(\mathrm{M} 0-$ $\mathrm{K} \alpha)=13.000 \mathrm{~mm}^{-1}$. Intensity data were collected as for complex 2; of 5496 reflections measured, 3445 were considered observed $[1>2 \sigma(1)]$. The structure was solved and refined as for 2 : $R=0.0286$, $W R\left(F^{2}\right)=0.0728$. The two independent formula units in the asymmetric unit are pseudo-symmetrically related. A tomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic D ata Centre (CCDC). See Instructions for Authors, J. C hem. Soc., D alton Trans., 1996, I ssue 1. A ny request to the CCDC for this material should quote the full literature citation and the reference number 186/321.

Scheme 1

Fig. 1 A n ORTEP diagram of complex 2. Selected bond distances (\AA) : $\mathrm{Os}(1)-\mathrm{Os}(2) \quad 2.8132(7), \quad \mathrm{Os}(2)-\mathrm{C}(3) \quad 2.04(1), \quad \mathrm{C}(3)-\mathrm{C}(9) \quad 1.44(2)$, C(9)-C(10) 1.43(2), C(10)-C(11) 1.45(2), C(11)-N 1.34(1), C(3)-O(3) 1.35(1), $\mathrm{Os}(1)-\mathrm{C}(9) 2.18(1), \mathrm{Os}(1)-\mathrm{C}(10) 2.21(1)$ and $\mathrm{C}(8)-0(8) 1.21(1)$
$\mu-\eta^{2}: \eta^{3}-\mathrm{C}(\mathrm{OH}) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{M} \mathrm{e)}=\mathrm{CH}\right.$ C N H Pr group. The methyl propiolate ligand couples with both a CO ligand and the isocyanide group. The bond distances of $\mathrm{C}(9)-\mathrm{C}(3)[1.44(2) \AA$] and $C(9)-C(10)[1.43(2) \AA]$ in the allyl group show partial doublebond character similar to that found in the related complex [(η $\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right)(\mathrm{OC})_{2} \mathrm{Re}\left\{\mu-\eta^{1}: \eta^{3}-\mathrm{CH}=\mathrm{C}\left(\mathrm{CM} \mathrm{e}=\mathrm{CH}_{2}\right) \mathrm{CO}\right\} \operatorname{Re}(\mathrm{CO})\left(\eta-\mathrm{C}_{5}^{-}\right.$ $\left.\mathrm{M}_{5} \mathrm{e}_{5}\right]^{8}$ F urthermore, $\mathrm{C}(3)-\mathrm{O}(3), \mathrm{C}(10)-\mathrm{C}(11)$ and $\mathrm{C}(11)-\mathrm{N}$ al so show partial double-bond character, ${ }^{9}$ suggesting π delocalization throughout the five bonds $\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(9)-\mathrm{C}(10)-$ $\mathrm{C}(11)-\mathrm{N}$.
An X-ray analysis of complex $\mathbf{3}$ was also undertaken (Fig. 2). \ddagger The molecule consists of a dinuclear complex with a distance $\mathrm{Os}(1)-\mathrm{Os}(2)$ of $2.7905(7) \AA$. The Os atoms are bridged by a $\mu-\eta^{2}: \eta^{3}-\mathrm{C}(\mathrm{OH}) \mathrm{CH}=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right) \mathrm{CN} \mathrm{HPr}$ group, in which the chain $O(7)-C(7)-C(8)-C(9)-C(12)-N$ possesses five partialdouble bonds, indicating that π delocalization also exists over these bonds.

Examination of the crystal structures of complexes $\mathbf{2}$ and $\mathbf{3}$ illustrates that regioselective couplings of the alkyne with both CO and CNR during the reaction of $\left[\mathrm{OS}_{3}(\mathrm{CO})_{10}(\mathrm{CN}\right.$ $\operatorname{Pr})(\mathrm{NCMe})$] and methyl propiolate. Two kinds of $\mathrm{C}-\mathrm{C}$ bond formations including coupling of alkyne and CO as well as coupling of alkyne and CNPr are observed here. ${ }^{10,11}$ To our knowledge this is the first demonstration of an alkyne molecule coupling with CO and CNR simultaneously in a metal cluster.

Fig. 2 An ORTEP diagram of complex 3. Selected bond distances (\AA) : $\mathrm{Os}(1)-\mathrm{Os}(2) \quad 2.7905(7), \quad \mathrm{Os}(2)-\mathrm{C}(7) \quad 2.08(1), \quad \mathrm{C}(7)-\mathrm{C}(8) \quad 1.35(1)$, $\mathrm{C}(8)-\mathrm{C}(9) 1.45(1), \mathrm{C}(9)-\mathrm{C}(12) 1.44(1), \mathrm{C}(12)-\mathrm{N} 1.32(1), \mathrm{C}(7)-0(7)$ 1.35(1), Os(1)-C(7) 2.38(1), Os(1)-C(8) 2.175(9), Os(1)-C(9) 2.21(1) and $\mathrm{C}(10)-\mathrm{O}(10) 1.22(1)$

The steric effect of the isocyanide ligand is most likely to control the regioselective addition of the alkyne, leading to the formation of two isomers, 2 and 3, in a ratio of 5:1. The co-ordinated $\mu-\eta^{2}: \eta^{3}$-allylidene groups in 2 and $\mathbf{3}$, are rare in dinuclear metal complexes or metal clusters. ${ }^{8,10}$

Acknowledgements

We thank the N ational Science Council of the Republic of China for financial support.

References

1 J. P. Collman, L. S. Hegedus, J. R. Norton and R. G. Finke, Principles and Applications of Organotransition M etal Chemistry, U niversity Science Books, M ill Valley, CA, 1987; K. J. Ivin, J. J. Rooney, C. D. Stewart, M. L. H. Green and R. M ahtab, J. Chem. Soc., Chem. Commun., 1978, 604.
2 W. Hirpo and M. D. Curtis, O rganometallics, 1994, 13, 2706.
3 A. C. Filippou, W. Grünleitner, C. Völkl and P. K iprof, A ngew. Chem., Int. Ed. Engl., 1991, 30, 1167.
4 B. Hessen, A. M eetsma, F. V. Bolhuis, J. H. Teuben, G. H elgesson and S. Jagner, Organometallics, 1990, 9, 1925.
5 K. L. Lu, H. J. Chen, P. Y. Lu, S. Y. Li, F. E. Hong, S. M. Peng and G. H. L ee, O rganometallics, 1994, 13, 585.

6 E. J. Gabe, Y. Le Page, J. P. Charland, F. L. Lee and P. S. White, J. A ppl. C rystallogr., 1989, 22, 384.

7 C. K. Johnson, ORTEP, Report OR NL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
8 C. P. Casey, Y. H a and D. R. Powell, J. A m. Chem. Soc., 1994, 116, 3424.

9 F. H. A llen, O. K ennard, D. G. Watson, L. Brammer, A. G. Orpen and R. Taylor, J. Chem. Soc., Perkin Trans. 2, 1987, S1.
10 M. Etienne, P. S. White and J. L. Templeton, Organometallics, 1993, 12, 4010; N. E. Schore, Chem. Rev., 1988, 88, 1081; G. L. G eoffroy and S. L. Bassner, A dv. Organomet. C hem., 1988, 28, 1.
11 B. F. G. Johnson, J. W. K elland, J. Lewis, A. L. M ann and P. R. R aithby, J. C hem. Soc., C hem. Commun., 1980, 547; S. L otz, P. H. V. Rooyen and R. M eyer, A dv. Organomet. C hem., 1995, 37, 219.

Received 4th O ctober 1996; Communication 6/06815D

